Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
2.
Hum Brain Mapp ; 45(6): e26686, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647048

RESUMO

Deuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non-invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium-labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase-encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non-Cartesian spatial-spectral sampling schemes for whole-brain 2H FID-MR Spectroscopic Imaging to assess time-resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions. Results were compared with lower-resolution DMI maps, conventionally acquired within the same session. Six healthy volunteers (4 m/2 f) were scanned for ~90 min after administration of 0.8 g/kg oral [6,6']-2H glucose. Time-resolved whole brain 2H FID-DMI maps of glucose (Glc) and glutamate + glutamine (Glx) were acquired with 0.75 and 2 mL isotropic spatial resolution using density-weighted concentric ring trajectory (CRT) and conventional phase encoding (PE) readout, respectively, at 7 T. To minimize the effect of decreased signal-to-noise ratios associated with smaller voxels, low-rank denoising of the spatiotemporal data was performed during reconstruction. Sixty-three minutes after oral tracer uptake three-dimensional (3D) CRT-DMI maps featured 19% higher (p = .006) deuterium-labeled Glc concentrations in GM (1.98 ± 0.43 mM) compared with WM (1.66 ± 0.36 mM) dominated regions, across all volunteers. Similarly, 48% higher (p = .01) 2H-Glx concentrations were observed in GM (2.21 ± 0.44 mM) compared with WM (1.49 ± 0.20 mM). Low-resolution PE-DMI maps acquired 70 min after tracer uptake featured smaller regional differences between GM- and WM-dominated areas for 2H-Glc concentrations with 2.00 ± 0.35 mM and 1.71 ± 0.31 mM, respectively (+16%; p = .045), while no regional differences were observed for 2H-Glx concentrations. In this study, we successfully implemented 3D FID-MRSI with fast CRT encoding for dynamic whole-brain DMI at 7 T with 2.5-fold increased spatial resolution compared with conventional whole-brain phase encoded (PE) DMI to visualize regional metabolic differences. The faster metabolic activity represented by 48% higher Glx concentrations was observed in GM- compared with WM-dominated regions, which could not be reproduced using whole-brain DMI with the low spatial resolution protocol. Improved assessment of regional pathologic alterations using a fully non-invasive imaging method is of high clinical relevance and could push DMI one step toward clinical applications.

3.
Cancers (Basel) ; 16(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473305

RESUMO

This paper investigated the correlation between magnetic resonance spectroscopic imaging (MRSI) and magnetic resonance fingerprinting (MRF) in glioma patients by comparing neuro-oncological markers obtained from MRSI to T1/T2 maps from MRF. Data from 12 consenting patients with gliomas were analyzed by defining hotspots for T1, T2, and various metabolic ratios, and comparing them using Sørensen-Dice similarity coefficients (DSCs) and the distances between their centers of intensity (COIDs). The median DSCs between MRF and the tumor segmentation were 0.73 (T1) and 0.79 (T2). The DSCs between MRSI and MRF were the highest for Gln/tNAA (T1: 0.75, T2: 0.80, tumor: 0.78), followed by Gly/tNAA (T1: 0.57, T2: 0.62, tumor: 0.54) and tCho/tNAA (T1: 0.61, T2: 0.58, tumor: 0.45). The median values in the tumor hotspot were T1 = 1724 ms, T2 = 86 ms, Gln/tNAA = 0.61, Gly/tNAA = 0.28, Ins/tNAA = 1.15, and tCho/tNAA = 0.48, and, in the peritumoral region, were T1 = 1756 ms, T2 = 102 ms, Gln/tNAA = 0.38, Gly/tNAA = 0.20, Ins/tNAA = 1.06, and tCho/tNAA = 0.38, and, in the NAWM, were T1 = 950 ms, T2 = 43 ms, Gln/tNAA = 0.16, Gly/tNAA = 0.07, Ins/tNAA = 0.54, and tCho/tNAA = 0.20. The results of this study constitute the first comparison of 7T MRSI and 3T MRF, showing a good correspondence between these methods.

4.
Sci Rep ; 14(1): 3254, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332163

RESUMO

Acetylcarnitine is an essential metabolite for maintaining metabolic flexibility and glucose homeostasis. The in vivo behavior of muscle acetylcarnitine content during exercise has not been shown with magnetic resonance spectroscopy. Therefore, this study aimed to explore the behavior of skeletal muscle acetylcarnitine during rest, plantar flexion exercise, and recovery in the human gastrocnemius muscle under aerobic conditions. Ten lean volunteers and nine overweight volunteers participated in the study. A 7 T whole-body MR system with a double-tuned surface coil was used to acquire spectra from the gastrocnemius medialis. An MR-compatible ergometer was used for the plantar flexion exercise. Semi-LASER-localized 1H MR spectra and slab-localized 31P MR spectra were acquired simultaneously in one interleaved exercise/recovery session. The time-resolved interleaved 1H/31P MRS acquisition yielded excellent data quality. A between-group difference in acetylcarnitine metabolism over time was detected. Significantly slower τPCr recovery, τPCr on-kinetics, and lower Qmax in the overweight group, compared to the lean group was found. Linear relations between τPCr on-kinetics, τPCr recovery, VO2max and acetylcarnitine content were identified. In conclusion, we are the first to show in vivo changes of skeletal muscle acetylcarnitine during acute exercise and immediate exercise recovery with a submaximal aerobic workload using interleaved 1H/31P MRS at 7 T.


Assuntos
Acetilcarnitina , Sobrepeso , Humanos , Acetilcarnitina/metabolismo , Fosfocreatina/metabolismo , Sobrepeso/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo
6.
Magn Reson Med ; 91(5): 2044-2056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193276

RESUMO

PURPOSE: Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0 ), which is a prerequisite for high quality data. Thus, characterization of changes to B0 , for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. METHODS: We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction. A 3D U-net was trained on in vivo gradient-echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid-body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine-trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U-net with these data. RESULTS: Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator-equivalent method and proposed method. CONCLUSION: It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Movimento , Processamento de Imagem Assistida por Computador/métodos , Artefatos
8.
J Neurol ; 271(2): 804-818, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37805665

RESUMO

OBJECTIVE: Recently, the 7 Tesla (7 T) Epilepsy Task Force published recommendations for 7 T magnetic resonance imaging (MRI) in patients with pharmaco-resistant focal epilepsy in pre-surgical evaluation. The objective of this study was to implement and evaluate this consensus protocol with respect to both its practicability and its diagnostic value/potential lesion delineation surplus effect over 3 T MRI in the pre-surgical work-up of patients with pharmaco-resistant focal onset epilepsy. METHODS: The 7 T MRI protocol consisted of T1-weighted, T2-weighted, high-resolution-coronal T2-weighted, fluid-suppressed, fluid-and-white-matter-suppressed, and susceptibility-weighted imaging, with an overall duration of 50 min. Two neuroradiologists independently evaluated the ability of lesion identification, the detection confidence for these identified lesions, and the lesion border delineation at 7 T compared to 3 T MRI. RESULTS: Of 41 recruited patients > 12 years of age, 38 were successfully measured and analyzed. Mean detection confidence scores were non-significantly higher at 7 T (1.95 ± 0.84 out of 3 versus 1.64 ± 1.19 out of 3 at 3 T, p = 0.050). In 50% of epilepsy patients measured at 7 T, additional findings compared to 3 T MRI were observed. Furthermore, we found improved border delineation at 7 T in 88% of patients with 3 T-visible lesions. In 19% of 3 T MR-negative cases a new potential epileptogenic lesion was detected at 7 T. CONCLUSIONS: The diagnostic yield was beneficial, but with 19% new 7 T over 3 T findings, not major. Our evaluation revealed epilepsy outcomes worse than ILAE Class 1 in two out of the four operated cases with new 7 T findings.


Assuntos
Epilepsias Parciais , Epilepsia , Substância Branca , Humanos , Adulto , Consenso , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Imageamento por Ressonância Magnética/métodos , Substância Branca/patologia
9.
Int J Transgend Health ; 24(4): 499-509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901063

RESUMO

Objective: We aimed to investigate the effect of gender-affirming hormone therapy (GAHT) on cardiovascular disease risk factors focusing on glucose tolerance. Patients and Methods: This primarily translational study enrolled 16 transgender persons assigned female at birth (AFAB), 22 assigned male at birth (AMAB), and 33 age- and BMI-matched cisgender controls at the Medical University of Vienna from 2013 to 2020. A 3-Tesla MRI scan to measure intramyocardial, pancreatic, hepatic fat content and subcutaneous-to-visceral adipose tissue ratio (SAT/VAT-ratio), an oral glucose tolerance test (oGTT), bloodwork including brain natriuretic peptide (pro-BNP), sex hormones and two glucose-metabolism related biomarkers (adiponectin, betatrophin) were performed. Results: Estrogen intake was associated with higher fasting insulin (p = 0.034) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (p = 0.037), however, lower HbA1c levels (p = 0.031) in AMAB than cisgender males. Adiponectin (p = 0.001) and betatrophin (p = 0.034) levels were higher in AMAB than cisgender males, but similar to cisgender females. Compared to cisgender females, AFAB displayed no differences in glucose metabolism or SAT/VAT-ratio. AFAB had lower pro-BNP levels (p = 0.014), higher liver enzymes (AST: p = 0.011; ALT: p = 0.012) and lower HDL levels (p = 0.017) than cisgender females, but comparable levels to cisgender males. AMAB showed an increased heart rate (p < 0.001) and pro-BNP (p = 0.002) levels, but a more favorable SAT/VAT-ratio (p = 0.013) and lower creatine kinase (CK) (p = 0.001) than cisgender males. There were no relevant differences in organ fat content between transgender persons and their respective cisgender controls. Conclusion: In AMAB, most investigated parameters adapted to levels seen in cisgender females except for parameters related to fasted insulin resistance. AMAB should be monitored with respect to the development of insulin resistance.

10.
Neuroimage ; 283: 120419, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871759

RESUMO

Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5-10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm. The net acquisition time is 3 times the volume acquisition time of EPI or about 12 s, but the three volumes could also replace "dummy scans" in fMRI, making it feasible to acquire QSM in little or No Additional Time for Imaging (NATIve). NATIve QSM values agreed well with reference 3D GRE QSM in the basal ganglia in healthy subjects. In patients with multiple sclerosis, there was also a good agreement between the susceptibility values within lesions and control ROIs and all lesions which could be seen on 3D GRE QSMs could also be visualized on NATIve QSMs. The approach is faster than conventional 3D GRE by a factor of 25-50 and faster than 3D EPI by a factor of 3-5. As a 2D technique, NATIve QSM was shown to be much more robust to motion than the 3D GRE and 3D EPI, opening up the possibility of studying neurological diseases involving iron accumulation and demyelination in patients who find it difficult to lie still for long enough to acquire QSM data with conventional methods.


Assuntos
Imagem Ecoplanar , Humanos , Imagem Ecoplanar/métodos , Gânglios da Base/diagnóstico por imagem
11.
Neuroimage Clin ; 40: 103524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37839194

RESUMO

OBJECTIVE: To investigate the metabolic pattern of different types of iron accumulation in multiple sclerosis (MS) lesions, and compare metabolic alterations within and at the periphery of lesions and newly emerging lesions in vivo according to iron deposition. METHODS: 7 T MR spectroscopic imaging and susceptibility-weighted imaging was performed in 31 patients with relapsing-remitting MS (16 female/15 male; mean age, 36.9 ± 10.3 years). Mean metabolic ratios of four neuro-metabolites were calculated for regions of interest (ROI) of normal appearing white matter (NAWM), "non-iron" (lesion without iron accumulation on SWI), and three distinct types of iron-laden lesions ("rim": distinct rim-shaped iron accumulation; "area": iron deposition across the entire lesions; "transition": transition between "area" and "rim" accumulation shape), and for lesion layers of "non-iron" and "rim" lesions. Furthermore, newly emerging "non-iron" and "iron" lesions were compared longitudinally, as measured before their appearance and one year later. RESULTS: Thirty-nine of 75 iron-containing lesions showed no distinct paramagnetic rim. Of these, "area" lesions exhibited a 65% higher mIns/tNAA (p = 0.035) than "rim" lesions. Comparing lesion layers of both "non-iron" and "rim" lesions, a steeper metabolic gradient of mIns/tNAA ("non-iron" +15%, "rim" +40%) and tNAA/tCr ("non-iron" -15%, "rim" -35%) was found in "iron" lesions, with the lesion core showing +22% higher mIns/tNAA (p = 0.005) and -23% lower tNAA/tCr (p = 0.048) in "iron" compared to "non-iron" lesions. In newly emerging lesions, 18 of 39 showed iron accumulation, with the drop in tNAA/tCr after lesion formation remaining significantly lower compared to pre-lesional tissue over time in "iron" lesions (year 0: p = 0.013, year 1: p = 0.041) as opposed to "non-iron" lesions (year 0: p = 0.022, year 1: p = 0.231). CONCLUSION: 7 T MRSI allows in vivo characterization of different iron accumulation types each presenting with a distinct metabolic profile. Furthermore, the larger extent of neuronal damage in lesions with a distinct iron rim was reconfirmed via reduced tNAA/tCr concentrations, but with metabolic differences in lesion development between (non)-iron-containing lesions. This highlights the ability of MRSI to further investigate different types of iron accumulation and suggests possible implications for disease monitoring.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Ferro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
12.
J Clin Med ; 12(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685535

RESUMO

PURPOSE: Articular cartilage defects are a prevalent consequence of femoroacetabular impingement (FAI) in young active patients. In accordance with current guidelines, large chondral lesions of the hip joint over 2 cm2 are recommended to be treated with matrix-associated, autologous chondrocyte transplantation (MACT); however, the conditions in the hip joint are challenging for membrane-based MACT options. Injectable MACT products can solve this problem. The purpose of the trial was to assess clinical and radiological outcomes 24 months after injectable MACT of focal chondral lesions caused by FAI. METHODS: We present data of 21 patients with focal cartilage defects of the hip [3.0 ± 1.4 cm2 (mean ± SD)], ICRS Grade III and IV caused by CAM-type impingement, who underwent arthroscopic MACT (NOVOCART® Inject) and FAI correction. The outcome was evaluated with the patient-reported outcome instruments iHOT33 and EQ-5D-5L (index value and VAS), whilst graft morphology was assessed based on the MOCART score over a follow-up period of 24 months. RESULTS: The iHOT33 score increased significantly from 52.9 ± 21.1 (mean ± SD) preoperatively to 85.8 ± 14.8 (mean ± SD; p < 0.0001) 24 months postoperatively. The EQ-5D-5L index value (p = 0.0004) and EQ-5D VAS (p = 0.0006) showed a statistically significant improvement as well. MRI evaluation after 24 months showed successful integration of the implant in all patients with a complete defect filling in 11 of 14 patients. CONCLUSIONS: Injectable MACT for the treatment of full-thickness chondral lesions of the hip joint due to FAI in combination with FAI correction improved symptoms, function, and quality of life in the treated cohort. Alongside the treatment of the underlying pathology by the FAI correction, the developed cartilage defect can be successfully repaired by MACT, which is of considerable clinical relevance.

13.
Radiologie (Heidelb) ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584681

RESUMO

BACKGROUND: Currently, two major magnetic resonance (MR) vendors provide commercial 7­T scanners that are approved by the Food and Drug Administration (FDA) for clinical application. There is growing interest in ultrahigh-field MRI because of the improved clinical results in terms of morphological detail, as well as functional and metabolic imaging capabilities. MATERIALS AND METHODS: The 7­T systems benefit from a higher signal-to-noise ratio, which scales supralinearly with field strength, a supralinear increase in the blood oxygenation level dependent (BOLD) contrast for functional MRI and susceptibility weighted imaging (SWI), and the chemical shift increases linearly with field strength with consequently higher spectral resolution. RESULTS: In multiple sclerosis (MS), 7­T imaging enables visualization of cortical lesions, the central vein sign, and paramagnetic rim lesions, which may be beneficial for the differential diagnosis between MS and other neuroinflammatory diseases in challenging and inconclusive clinical presentations and are seen as promising biomarkers for prognosis and treatment monitoring. The recent development of high-resolution proton MR spectroscopic imaging in clinically reasonable scan times has provided new insights into tumor metabolism and tumor grading as well as into early metabolic changes that may precede inflammatory processes in MS. This technique also improves the detection of epileptogenic foci in the brain. Multi-nuclear clinical applications, such as sodium imaging, have shown great potential for the evaluation of repair tissue quality after cartilage transplantation and in the monitoring of newly developed cartilage regenerative drugs for osteoarthritis. CONCLUSION: For special clinical applications, such as SWI in MS, MR spectroscopic imaging in tumors, MS and epilepsy, and sodium imaging in cartilage repair, 7T may become a new standard.

14.
Hum Brain Mapp ; 44(15): 5095-5112, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548414

RESUMO

The boundaries between tissues with different magnetic susceptibilities generate inhomogeneities in the main magnetic field which change over time due to motion, respiration and system instabilities. The dynamically changing field can be measured from the phase of the fMRI data and corrected. However, methods for doing so need multi-echo data, time-consuming reference scans and/or involve error-prone processing steps, such as phase unwrapping, which are difficult to implement robustly on the MRI host. The improved dynamic distortion correction method we propose is based on the phase of the single-echo EPI data acquired for fMRI, phase offsets calculated from a triple-echo, bipolar reference scan of circa 3-10 s duration using a method which avoids the need for phase unwrapping and an additional correction derived from one EPI volume in which the readout direction is reversed. This Reverse-Encoded First Image and Low resoLution reference scan (REFILL) approach is shown to accurately measure B0 as it changes due to shim, motion and respiration, even with large dynamic changes to the field at 7 T, where it led to a > 20% increase in time-series signal to noise ratio compared to data corrected with the classic static approach. fMRI results from REFILL-corrected data were free of stimulus-correlated distortion artefacts seen when data were corrected with static field mapping. The method is insensitive to shim changes and eddy current differences between the reference scan and the fMRI time series, and employs calculation steps that are simple and robust, allowing most data processing to be performed in real time on the scanner image reconstruction computer. These improvements make it feasible to routinely perform dynamic distortion correction in fMRI.


Assuntos
Mapeamento Encefálico , Encéfalo , Imagem Ecoplanar , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagem Ecoplanar/métodos , Artefatos
15.
Neuroimage ; 277: 120250, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414233

RESUMO

INTRODUCTION: Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'-2H2]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2H MRSI (DMI) and 1H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. METHODS: Five volunteers (4 m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8 g/kg oral [6,6'-2H2]-glucose administration using time-resolved 3D 2H FID-MRSI with elliptical phase encoding at 7T and 3D 1H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. RESULTS: One hour after oral tracer administration regionally averaged deuterium labeled Glx4 concentrations and the dynamics were not significantly different over all participants between 7T 2H DMI and 3T 1H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2H and 1H data points a weak to moderate negative correlation was observed for Glx4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc6 data GM (r=-0.61, p<0.001) and WM (r=-0.70, p<0.001). CONCLUSION: This study demonstrates that indirect detection of deuterium labeled compounds using 1H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Deutério/metabolismo , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glucose/metabolismo
16.
Cancers (Basel) ; 15(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37345077

RESUMO

OBJECTIVES: Advanced MR imaging of brain tumors is still mainly based on qualitative imaging. PET imaging offers additive metabolic information, and MR fingerprinting (MRF) offers a novel approach to quantitative data acquisition. The purpose of this study was to evaluate the ability of MRF to predict tumor regions and grading in combination with PET. METHODS: Seventeen patients with histologically verified infiltrating gliomas and available amino-acid PET data were enrolled. ROIs for solid tumor parts (SPo), perifocal edema (ED1), and normal-appearing white matter (NAWM) were selected on conventional MRI sequences and aligned to the MRF and PET images. The predictability of gliomas by region and grading as well as intermodal correlations were assessed. RESULTS: For MRF, we calculated an overall predictability by region (SPo, ED1, and NAWM) for all of the MRF parameters of 76.5%, 47.1%, and 94.1%, respectively. The overall ability to distinguish low- from high-grade gliomas using MRF was 88.9% for LGG and 75% for HGG, with an accuracy of 82.4%, a ppV of 85.71%, and an npV of 80%. PET positivity was found in 13/17 patients for solid tumor parts, and in 3/17 patients for the edema region. However, there was no significant difference in region-specific MRF values between PET positive and PET negative patients. CONCLUSIONS: MRF and PET provide quantitative measurements of the tumor tissue characteristics of gliomas, with good predictability. Nonetheless, the results are dissimilar, reflecting the different underlying mechanisms of each method.

17.
medRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131634

RESUMO

Introduction: Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'- 2 H 2 ]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2 H MRSI (DMI) and 1 H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. Methods: Five volunteers (4m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8g/kg oral [6,6'- 2 H 2 ]-glucose administration using time-resolved 3D 2 H FID-MRSI with elliptical phase encoding at 7T and 3D 1 H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. Results: One hour after oral tracer administration regionally averaged deuterium labeled Glx 4 concentrations and the dynamics were not significantly different over all participants between 7T 2 H DMI and 3T 1 H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc 6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2 H and 1 H data points a weak to moderate negative correlation was observed for Glx 4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc 6 data GM (r=- 0.61, p<0.001) and WM (r=-0.70, p<0.001). Conclusion: This study demonstrates that indirect detection of deuterium labeled compounds using 1 H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2 H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.

18.
Nat Biomed Eng ; 7(8): 1001-1013, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37106154

RESUMO

Impaired glucose metabolism in the brain has been linked to several neurological disorders. Positron emission tomography and carbon-13 magnetic resonance spectroscopic imaging (MRSI) can be used to quantify the metabolism of glucose, but these methods involve exposure to radiation, cannot quantify downstream metabolism, or have poor spatial resolution. Deuterium MRSI (2H-MRSI) is a non-invasive and safe alternative for the quantification of the metabolism of 2H-labelled substrates such as glucose and their downstream metabolic products, yet it can only measure a limited number of deuterated compounds and requires specialized hardware. Here we show that proton MRSI (1H-MRSI) at 7 T has higher sensitivity, chemical specificity and spatiotemporal resolution than 2H-MRSI. We used 1H-MRSI in five volunteers to differentiate glutamate, glutamine, γ-aminobutyric acid and glucose deuterated at specific molecular positions, and to simultaneously map deuterated and non-deuterated metabolites. 1H-MRSI, which is amenable to clinically available magnetic-resonance hardware, may facilitate the study of glucose metabolism in the brain and its potential roles in neurological disorders.


Assuntos
Encéfalo , Glucose , Humanos , Glucose/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neurotransmissores/metabolismo
19.
Am J Sports Med ; 51(6): 1414-1421, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37070725

RESUMO

BACKGROUND: There is an increasing interest in subchondral bone changes and intralesional bony overgrowth (ILBO) after cartilage repair. Their clinical and predictive relevance is unclear and debated. PURPOSE: To evaluate the long-term development of ILBO and bone marrow edema-like signals (BMELSs) after autologous chondrocyte implantation (ACI) treatment of cartilage defects to find any predictive factors for their appearance. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: A total of 130 patients with 160 cartilage defects in the knee joint treated with third-generation ACI were included in this study. Radiological scores as the MOCART (magnetic resonance observation of cartilage repair tissue), the MOCART 2.0 and the 3D-MOCART using magnetic resonance imaging (MRI), and patient-reported outcome measures such as the Knee injury and Osteoarthritis Outcome Score (KOOS), International Knee Documentation Committee (IKDC) score, Noyes Sports Activity Rating Scale (NSARS) score, and Tegner Activity Scale (TAS) score were evaluated between 60 and 120 months (mean, 88 months) postoperatively. The radiological evaluation focused on the occurrence and size of subchondral bone changes, BMELSs, and ILBO during short-, medium-, and long-term follow-up. RESULTS: In long-term evaluation of clinical data, the IKDC score increased preoperatively from 36 to 64, the overall KOOS from 43 to 64, the NSARS score from 30 to 67, and the TAS score from 2 to 3.7. The mean MOCART score was 73; the MOCART 2.0, 69; and the 3D-MOCART, 69 and 70. The authors observed ILBO in 77% and BMELSs in 74% of patients after 60 to 120 months. Previous cartilage surgeries and osteochondral defect buildup showed higher rates of these abnormalities. Early lesions of the subchondral lamina did not predict ILBO in long-term follow-up, but BMELSs predicted later appearance with decreasing size. CONCLUSION: Subchondral changes frequently appeared in long-term MRI evaluation of patients after ACI. BMELSs showed a decreasing diameter over the years, while the size of ILBO increased in the later follow-ups. These findings did not affect the clinical outcome in the study population. However, osteoarthritis is likely to progress. The degenerative effect and influence on longer-term outcomes needs to be clarified in future studies.


Assuntos
Doenças da Medula Óssea , Doenças das Cartilagens , Cartilagem Articular , Osteoartrite , Humanos , Estudos Retrospectivos , Condrócitos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Cartilagem Articular/lesões , Seguimentos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética/métodos , Transplante Autólogo/métodos
20.
Hum Brain Mapp ; 44(3): 1209-1226, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36401844

RESUMO

Of the sources of noise affecting blood oxygen level-dependent functional magnetic resonance imaging (fMRI), respiration and cardiac fluctuations are responsible for the largest part of the variance, particularly at high and ultrahigh field. Existing approaches to removing physiological noise either use external recordings, which can be unwieldy and unreliable, or attempt to identify physiological noise from the magnitude fMRI data. Data-driven approaches are limited by sensitivity, temporal aliasing, and the need for user interaction. In the light of the sensitivity of the phase of the MR signal to local changes in the field stemming from physiological processes, we have developed an unsupervised physiological noise correction method using the information carried in the phase and the magnitude of echo-planar imaging data. Our technique, Physiological Regressor Estimation from Phase and mAgnItude, sub-tR (PREPAIR) derives time series signals sampled at the slice TR from both phase and magnitude images. It allows physiological noise to be captured without aliasing, and efficiently removes other sources of signal fluctuations not related to physiology, prior to regressor estimation. We demonstrate that the physiological signal time courses identified with PREPAIR agree well with those from external devices and retrieve challenging cardiac dynamics. The removal of physiological noise was as effective as that achieved with the most used approach based on external recordings, RETROICOR. In comparison with widely used recording-free physiological noise correction tools-PESTICA and FIX, both performed in unsupervised mode-PREPAIR removed significantly more respiratory and cardiac noise than PESTICA, and achieved a larger increase in temporal signal-to-noise-ratio at both 3 and 7 T.


Assuntos
Encéfalo , Respiração , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Razão Sinal-Ruído , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar , Artefatos , Mapeamento Encefálico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...